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Abstract
Background  Ex-ante identification of the last year in life facilitates a proactive palliative approach. Machine learning 
models trained on electronic health records (EHR) demonstrate promising performance in cancer prognostication. 
However, gaps in literature include incomplete reporting of model performance, inadequate alignment of model 
formulation with implementation use-case, and insufficient explainability hindering trust and adoption in clinical 
settings. Hence, we aim to develop an explainable machine learning EHR-based model that prompts palliative care 
processes by predicting for 365-day mortality risk among patients with advanced cancer within an outpatient setting.

Methods  Our cohort consisted of 5,926 adults diagnosed with Stage 3 or 4 solid organ cancer between July 1, 2017, 
and June 30, 2020 and receiving ambulatory cancer care within a tertiary center. The classification problem was 
modelled using Extreme Gradient Boosting (XGBoost) and aligned to our envisioned use-case: “Given a prediction 
point that corresponds to an outpatient cancer encounter, predict for mortality within 365-days from prediction 
point, using EHR data up to 365-days prior.” The model was trained with 75% of the dataset (n = 39,416 outpatient 
encounters) and validated on a 25% hold-out dataset (n = 13,122 outpatient encounters). To explain model outputs, 
we used Shapley Additive Explanations (SHAP) values. Clinical characteristics, laboratory tests and treatment data 
were used to train the model. Performance was evaluated using area under the receiver operating characteristic curve 
(AUROC) and area under the precision-recall curve (AUPRC), while model calibration was assessed using the Brier 
score.

Results  In total, 17,149 of the 52,538 prediction points (32.6%) had a mortality event within the 365-day prediction 
window. The model demonstrated an AUROC of 0.861 (95% CI 0.856–0.867) and AUPRC of 0.771. The Brier score 
was 0.147, indicating slight overestimations of mortality risk. Explanatory diagrams utilizing SHAP values allowed 
visualization of feature impacts on predictions at both the global and individual levels.
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Background
In their last year of life, individuals with advanced cancer 
face costly and over-medicalized care, high unaddressed 
needs, and decreasing quality of life [1–9]. An early pal-
liative care approach is essential to improve end-of-life 
outcomes, including symptom management, psycho-
education for patient and caregiver empowerment, and 
advance care planning [10–13]. Yet, many patients with 
advanced cancer in the real-world setting may either not 
receive palliative care, or receive it late into their disease 
trajectory [14–17]. Given workforce limitations, one pro-
posed approach would be to use short-term mortality as 
a surrogate for identifying patients with high probability 
of palliative needs and most likely to benefit from pallia-
tive care [18–20]. 

Machine learning models trained on Electronic Health 
Record (EHR) data have shown promise in cancer prog-
nostication, where advanced computational techniques 
are used to model linear and non-linear patterns within 
big datasets [19, 21]. The ability to leverage on routine 
data is attractive as it avoids burdensome external data 
entry and workflow disruptions. However, there remains 
several gaps within published literature.

First, while many published cancer prognostic models 
show promising discriminatory performance, the major-
ity had high or uncertain risk of biasness, with incom-
plete reporting of modelling processes, and selective 
reporting of performance metrics [21, 22]. Specific to 
performance metrics among general oncology models, 
most models demonstrate low positive predictive value 
(0.45–0.53) and sensitivity (0.27–0.60), underperform-
ing at the actual task of identifying patients who would 
die [21]. Second, alignment of model development 
strategy with articulated use-case is also critically miss-
ing in literature [23–26]. For example, some oncology 
prognostic models were developed on all-stage cancer 
cohorts despite the proposed use-case of increasing pal-
liative care interventions. This fails to account that clini-
cal implications and actions between early and advanced 
stage cancers can be vastly different when provided with 
a prediction of short-term mortality [27–29]. Third, if a 
model is designed for use as a clinical decision support 
system, reporting the model without intuitive explana-
tions to model performance can negatively impact trust 
and adoption at clinical implementation [30]. In addition, 
complex models with automated feature selection and 

engineering may generate largely non-interpretable pre-
dictions [31]. 

This manuscript addresses gaps highlighted above. We 
aimed to develop and validate an explainable machine 
learning model trained on EHR data of advanced can-
cer patients, predicting for risk of 365-day mortality. 
Envisioning model output to nudge clinicians towards 
a palliative care approach, we aimed to enhance model 
interpretability by leveraging on prognostic literature 
and domain knowledge for feature engineering [32]. 
Systematic reporting of this study follows the Transpar-
ent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) reporting 
guideline for prediction model development and valida-
tion [33]. 

Methods
Study design
We identified our cohort from patients with advanced 
cancer registered with the National Cancer Centre Sin-
gapore (NCCS). NCCS maintains a cancer-specific data 
repository with human-in-loop processes that registers 
cancer diagnosis and stage for each newly diagnosed 
patient. For each patient, data spanning 1st July 2016 to 
31st December 2021 was extracted from the MOSAIQ 
Oncology Information System and SingHealth’s Enter-
prise Analytic Platform (eHints), which are unified data 
repositories that combine data from various healthcare 
transactional systems [34]. 

Participants
Our cohort consisted of adults (age ≥ 18) diagnosed 
with Stage 3 or Stage 4 solid organ cancer between 1st 
July 2017 to 30th June 2020. To allow sufficient data for 
prediction, these patients were required to have at least 
two outpatient encounters within NCCS between 1st 
July 2017 to 31st December 2020. Non-residents were 
excluded from the cohort as their mortality outcome 
were not accurately reflected in local databases.

Problem framing
We framed our classification problem to match the use-
case: “Given a prediction point that corresponds to an 
actualized outpatient cancer visit, predict for mortal-
ity within 365-days from prediction point, using EHR 
data up to 365-days prior.” (Fig. 1a) This prediction point 
effectively divides any patient’s EHR timeline into past 

Conclusion  Our machine learning model demonstrated good discrimination and precision-recall in predicting 
365-day mortality risk among individuals with advanced cancer. It has the potential to provide personalized mortality 
predictions and facilitate earlier integration of palliative care.
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events and a virtual future. To allow baseline data to be 
available for prediction, we restricted predictions to the 
2nd outpatient visit and beyond. Patients were allowed 
more than one prediction point to capture their disease 
and treatment trajectory over time. To reduce over-train-
ing on samples with clustered visits, we only allowed one 
prediction point per month for those with more than the 
median number of outpatient visits (Fig. 1b).

Outcome
Outcome was 365-day mortality from prediction point. 
Mortality date was obtained from the Singapore Regis-
try of Births and Deaths and censored by 31st December 
2021. Outcome was assumed complete as death registra-
tions are mandatory by law.

Data pre-processing
Oncologists, palliative specialists, and data scientists 
were involved in feature selection and engineering. Our 
data included 5 categories of data commonly available 
within EHR and clinically relevant to prognostication: 

(1) Demographics; (2) Clinical Characteristics; (3) Labo-
ratory and Physical measurements; (4) Systemic cancer 
treatment; and (5) Healthcare visits. (Additional File 1: 
Table S1 and Table S2)

To derive features on systemic cancer treatment, we 
extracted dispensed drug data and mapped them to the 
World Health Organisation (WHO) Anatomical Thera-
peutic Chemical (ATC) classification. The WHO ATC 
classification is a system of alphanumeric codes devel-
oped for the classification of drugs in a hierarchy with 
five different levels. Subgroup L01 (with its subcodes) 
are antineoplastic agents, while subgroup L02 (with its 
subcodes) are cancer endocrine therapies [35]. We cat-
egorised cancer treatments under subgroups of “L01A, 
L01B, L01C, L01D, L01E, L01F, L01X, L02A, L02B, and 
Trial drugs [35]. Additionally, we generated cumulative 
counts of unique cancer drugs as a surrogate for change 
in cancer treatment line as this tends to portend poorer 
prognosis.

To derive comorbidities, we extracted International 
Classification of Diseases, Ninth and Tenth Revision 

Fig. 1  a: Framing of the risk prediction problem. b: Sliding window of prediction points along the timeline for a single patient

 



Page 4 of 10Zhuang et al. BMC Palliative Care          (2024) 23:124 

(ICD-9 and ICD-10) diagnosis codes and transformed 
them into Elixhauser diagnosis categories using R pack-
age ‘comorbidity’ version 1.0.5 [36]. To represent lab-
oratory test results and body mass index (BMI), we 
summarized data with minimum, maximum, median, 
standard deviation, and latest available reading [37]. 
Engineered features such as healthcare utilization count 
as well as elapsed time from diagnosis were computation-
ally derived.

Missing data handling
Longitudinal EHR data is often sparsely distributed, 
irregularly clustered, and incomplete [38]. Missingness 
within EHR data is “not missing at random” (NMAR) as 
the probability of missing data could be linked to dis-
ease severity, healthcare use, or a lack of clinical indica-
tion to collect the data [39]. Missingness is informative 
and should be incorporated within the modelling [40]. 
Boosted tree models such as XGBoost can handle miss-
ingness in features directly, as it is able to branch direc-
tions for missing values learned during training by itself 
(sparsity-aware split finding) [41]. Additional File 1: Table 
S2 provides a summary on missing data.

Statistical analysis and modelling
We developed the boosted tree model on Python ver-
sion 3.9.16 using XGBoost (xgboost version 1.7.5). The 
data was split with ratio of 75:25 data for training and 
validation. Area under the receiver operating character-
istic curve (AUROC) was used as the primary perfor-
mance metric, as it reflects trade-off between sensitivity 
and specificity. Because AUROC is misleadingly high in 
datasets with class imbalance, we reported the area under 
the precision-recall curve (AUPRC) as it measures trade-
off between positive predictive value and sensitivity [42]. 
The calibration plot and Brier score were used to com-
pare predicted vs. observed rates of 365-day mortality 
[43]. To explain model output, we used Shapley Addi-
tive Explanations (SHAP) values (shap 0.41.0), a model-
agnostic methodology that improves transparency and 
interpretability of machine-learning models. SHAP val-
ues are based on a cooperative game theoretic approach, 
where contribution of each feature towards a predic-
tion is calculated by comparing changes in the predic-
tion, averaged across all possible combinations of input 
features [44, 45]. The model agnostic explainer used was 
TreeSHAP, which leverages on the structure of trees to 
approximate the Shapley values for each feature while 
providing feature attribution scores for predictions made 
by tree-based models [46]. 

Results
A total of 5926 patients with 52,538 prediction points 
were included in this study. (Additional File 1: Figure S1) 
To prevent data leakage between training and validation 
sets, the 75 − 25 split was carried out at patient-level. The 
training cohort consisted of 39,416 prediction points 
among 4444 patients, while the test cohort consisted of 
13,122 prediction points among 1482 patients.

The mean age of our population was 66.3 (Standard 
Deviation [SD] 11.5) years with 64.2% being male and 
majority (84.3%) of Chinese ethnicity. A total of 3725 
patients (62.9%) had stage 4 cancer while 2201 patients 
(37.1%) had stage 3 cancer. By censor date of 31st 
December 2021, 3316 (55.6%) patients in the cohort had 
demised. (Table 1) In total, 17,149 of the 52,538 predic-
tion points (32.6%) had a mortality event within the 365-
day prediction window.

Model
Model performance metrics on the validation cohort are 
reported in Table  2. The confusion matrix and model 
parameters can be found in the Additional file (Table S3 
and S4 respectively). Set at a default classification thresh-
old of 0.5, our model achieved an Accuracy of 0.781 (95% 
CI 0.774–0.788), AUROC of 0.861 (95% CI 0.856–0.867) 
and AUPRC of 0.771. In terms of model calibration, the 
Brier score was 0.147 with slight overestimations of 365-
day mortality risk (calibration plot shown in Additional 
file 1: Figure S2).

Explainability
Figure  2a provides a summary ranking of the topmost 
data features (from highest to lowest SHAP values) 
within the model. The model itself considers all features 
and SHAP values can be calculated for all features. How-
ever, we show only the top 10 features for the sake of 
brevity. The top 3 impactful data features are the latest 
albumin value, stage 4 cancer on diagnosis, and unique 
number of cancer drugs given.

Figure 2b shows the interaction between value of each 
feature and its impact on model prediction. Similarly, we 
illustrate the top 15 features. The values for numeric fea-
tures are normalized and represented along a colour gra-
dient with red for larger value and blue for smaller value 
of the feature. The values for categorical features are 
similarly represented with red for present (value = 1.00) 
and blue for absent (value = 0.00). Within each feature, 
the line is then visualized by plotting individual-coloured 
dots that represents each prediction along its SHAP 
value (x-axis). A negative SHAP value (extending to the 
left) indicates a reduced probability for mortality while 
a positive SHAP value (extending to the right) indicates 
an increased probability of mortality. For example, we 
find that the lower the albumin value, the higher the 
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probability for mortality (the y-axis line extending to the 
left is mostly red while the line extending to the right 
turns increasingly blue). Predictions with stage 4 cancer 
are associated with a higher probability for mortality, as 
they cluster towards the right side of the y-axis line.

Discussion
In this study, we trained and validated an XGBoost 
model using structured EHR data of advanced cancer 
patients. The model performed with excellent discrimi-
nation (AUROC 0.861), precision-recall (AUPRC 0.771), 
and accuracy (0.781) in predicting for the last year of 
life. Comparing against most similar published machine 
learning models in general cancer cohorts, we report a 
similar AUROC (0.812–0.890) and much higher AUPRC 
(0.340–0.462) [27, 28, 47, 48]. A high precision-recall is 
important to identify the few patients that will die within 
a year without overestimating the risk of death for the 
majority of patients who will actually survive, especially 
within resource-limited settings [42]. 

From the outset, we framed this AI development as 
a clinician decision support tool where predictions of 
high-risk mortality within 365-days may nudge clini-
cians towards considering involvement of palliative 
care, earlier anticipatory care discussions, as well as re-
assessing the risk-benefit ratios of standard-of-care next 
line therapies. Hence, model interpretability is essential 
for user adoption and acceptance [49]. Eschewing the 
practice of a completely data-driven approach to feature 
development, we instead leveraged on domain knowl-
edge of oncologists and palliative specialists in feature 
design to help with subsequent interpretability [32, 50]. 
For example, we recognise that disease control rates 
drop and risk of disease mortality increases with change 
in lines of cancer treatment [51]. Hence, an engineered 
feature of cumulative counts of unique cancer drug as a 
surrogate for cancer treatment line change was added, 
which became the third most important feature within 
our XGBoost model (Fig. 2a). Another example is where 
we incorporated strong literature evidence that elevated 
Neutrophil-Lymphocyte ratio (NLR) is associated with 
poor prognosis, and engineered features around NLR 
instead of providing raw neutrophil and lymphocyte data 
to the model [52]. This feature is the fourth most impor-
tant (Fig.  2b) where higher NLR values are associated 
with increased probability for mortality. Our approach of 
developing explainable models with engineered features 
that comport with literature and clinical knowledge reso-
nates with the clinician’s own intuitive understanding of 
prognostication and may increase model adoption [53]. 

Beyond global interpretability for a “black-box” 
machine-learning model, we have taken a next step by 
providing individual prediction explanations. Commonly, 
a binary classification model requires set probability 

Table 1  Study population characteristics (n = 5926)
Variable Number 

(%)
Age at Diagnosis
Mean (SD) 66.3 

(11.5)
Median (IQR) 67 (15)
Female 2122 

(35.8)
Race
Chinese 4996 

(84.3)
Malay 506 (8.5)
Indian 243 (4.1)
Others 181 (3.1)
Cancer Stage
III 2201 

(37.1)
IV 3725 

(62.9)
Median number of comorbidities (IQR) 3 (2)
ICD-101 Cancer diagnosis
C00-C14 Malignant neoplasms of lip, oral cavity, and 
pharynx

508 (8.6)

C15-C21 Malignant neoplasms of gastrointestinal tract 1620 
(27.3)

C22-C26 Malignant neoplasms of hepatobiliary system 668 (11.3)
C30-C39 Malignant neoplasms of respiratory and intratho-
racic organs

1353 
(22.8)

C40-C41 Malignant neoplasms of bone and articular 
cartilage

4 (0.1)

C43-C44 Melanoma and other malignant neoplasms of skin 24 (0.4)
C45-C49 Malignant neoplasms of mesothelial and soft 
tissue

42 (0.7)

C50-C50 Malignant neoplasms of breast 465 (7.8)
C51-C58 Malignant neoplasms of female genital organs 226 (3.8)
C60-C63 Malignant neoplasms of male genital organs 703 (11.9)
C64-C68 Malignant neoplasms of urinary tract 226 (3.8)
C73-C75 Malignant neoplasms of thyroid and other endo-
crine glands

26 (0.4)

C76-C80 Malignant neoplasms of ill-defined, other second-
ary and unspecified sites

99 (1.7)

Mortality by 31st December 2021 3316 
(55.6)

1ICD10: International Classification of Diseases 10th Revision

Table 2  Performance metrics of XGBoost Model
Accuracy (95% CI) 0.781 (0.774–0.788)
Precision 0.660
Recall / Sensitivity 0.734
Specificity 0.805
F11 0.695
Brier score 0.147
AUROC2 (95% CI) 0.861 (0.856–0.867)
AUPRC3 0.771
1F1: Harmonic mean of precision and recall, 2ROC-AUC: Area under the Curve of 
Receiver Operating Characteristics, 3PR-AUC: Area under the Curve of Precision-
Recall Curve
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Fig. 2  a. Bar summary of top 10 data features within the model. b. Feature plot summary of top 10 data features within the model
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threshold (set at 0.5 in our model), yet a patient with pre-
dicted probability of 0.49 may not be necessarily different 
in terms of risk from a patient with predicted probability 
of 0.51. Instead of using binary mortality prediction as a 
strict rule, we feel that visualizing predicted probabilities 
with model explainers will provide better clinical decision 
support for further clinical evaluation and interventions. 
Figure 3a and b shows the composition of individualized 

predictions for a 76-year-old Chinese gentleman with 
T3N0M1 lung cancer and comorbidities of hyperten-
sion and diabetes. “E[fX]]” denotes the average predicted 
probability of 365-day mortality for our entire cohort 
without considering any data features. “f(x)” denotes 
the final predicted probability of 365-day mortality after 
summing up all the feature contributions. Read from 
the bottom up, each data feature either increases (red 

Fig. 3  a. Individualized prediction for a true-negative case. b. Individualized prediction for a true-positive case
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arrows) or decreases (blue arrows) the probability of 365-
day mortality additively. In Fig.  3a, this prediction was 
done 23 days post diagnosis, where among other features, 
he had normal albumin (41.0 g/dl), low neutrophil-lym-
phocyte ratio (1.46) and healthy body mass index (22.8). 
The model predicted patient to have a 31.6% risk of dying 
in the next 365-days, which turned out to be a true-neg-
ative prediction. In Fig. 3b, this prediction was done 505 
days post diagnosis on the same patient, where patient’s 
albumin remained normal (41.0  g/dl), but being older, 
having received 4 different anti-cancer drugs, and having 
a higher neutrophil-lymphocyte ratio (6.41) increased his 
probability of mortality. The model predicted patient to 
have an 75.2% risk of dying in the next 365-days, which 
turned out to be a true-positive prediction.

Our model shows potential for clinical implementation 
in the cancer outpatient setting. The model output can 
be used in several ways. First, regular reports on identi-
fied outpatients can be provided to a back-end triage and 
case-management system. By proactively reaching out 
to these at-risk patients and offering regular palliative 
needs screening, issues can be identified and managed 
promptly. Second, model explanations and prompts can 
be sent to oncologists to increase their prognostic aware-
ness, nudge them towards early anticipatory care plan-
ning, and reassess the risk-benefit ratios of next-line 
therapies. Third, the ability to identify the ex-ante end-
of-life cancer cohort aids targeted study, formulation of 
healthcare policy, and prospective outcomes tracking 
around this at-risk group.

This study has several limitations. First, the model was 
trained and validated within a single centre advanced 
cancer cohort, and external validation will be needed to 
determine generalizability. Second, because cancer treat-
ment continues to evolve rapidly, temporal validation is 
needed to determine performance drift over time. Third, 
algorithmic fairness will also need to be ascertained in 
subsequent work by validating performance within key 
demographic subgroups (e.g. age groups, ethnicity, and 
gender) [54]. Fourth, our model was trained on advanced 
cancer patients on diagnosis and does not include 
patients with early staged cancers on diagnosis with sub-
sequent metastatic relapse. Identification of metastatic 
relapse is lacking even in established cancer registries like 
the Surveillance, Epidemiology, and End Results (SEER) 
Cancer database, and this is a problem that needs to be 
solved before any model can be used for patients with 
metastatic relapse [55]. Fifth, the model relies on pro-
cessed EHR data obtained from institutional data reposi-
tories. Future model deployment will require access to 
these same data repositories and platforms, instead of 
direct implementation within the operational EHR envi-
ronment. Lastly, as an AI tool for clinical decision sup-
port, performance metrics itself may not translate to 

real-world results, if clinicians do not act on the predic-
tion, or resource limitations reduces the number of at-
risk patients who can receive interventions. With recent 
national focus on end-of-life care within population 
health, we envision that palliative capacity and capabili-
ties will be bolstered to meet the needs of these addition-
ally identified patients [56]. In addition, we are exploring 
in-silico net-benefit analysis to study impact of the model 
on clinical outcomes based on simulated scenarios [57]. 

Conclusions
We have developed a prognostic tree-based model using 
structured EHR data, which possesses satisfactory dis-
crimination and precision-recall capabilities. Our model 
development approach places emphasis on problem 
framing, feature hand crafting using domain expertise, 
and interpretable outputs aimed at both global and indi-
vidual level prediction. While the model performance 
provides sufficient evidence in its use-case, further 
external validation is needed to confirm its robustness 
for real-world implementation. Further work is planned 
to conduct a prospective multi-centre validation study 
to simulate our envisioned use-case by handling actual 
data volumes of cancer outpatients weekly, allowing us 
to ascertain the model’s operability and efficiency within 
a real-world situation. Ultimately, this will enable us to 
refine and validate an AI solution that enables systematic 
ex-ante identification of cancer patients at-risk of mortal-
ity, with proactive palliative interventions triggered for 
the said individual.
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